Generating Uncertain Networks Based on Historical Network Snapshots
نویسندگان
چکیده
Imprecision, incompleteness and dynamic exist in wide range of network applications. It is difficult to decide the uncertainty relationship among nodes since traditional models do not make sense on uncertain networks, and the inherent computational complexity of problems with uncertainty is always intractable. In this paper, we study how to capture the uncertainty in networks by modeling a series snapshots of networks to an uncertain graph. Since the large number of possible instantiations of an uncertain network, a novel sampling scheme is proposed which enables the development of efficient algorithm to measure in uncertain networks; considering the practical of neighborhood relationship in real networks, a framework is introduced to transform the uncertain networks into deterministic weight networks where the weights on edges can be measured as Jaccard-like index. The comprehensive experimental evaluation on real data demonstrates the effectiveness and efficiency of our algorithms.
منابع مشابه
On The Fractional Minimal Cost Flow Problem of a Belief Degree Based Uncertain Network
A fractional minimal cost flow problem under linear type belief degree based uncertainty is studied for the first time. This type of uncertainty is useful when no historical information of an uncertain event is available. The problem is crisped using an uncertain chance-constrained programming approach and its non-linear objective function is linearized by a variable changing approach. An illus...
متن کاملReliability estimation of Iran's power network
Today, the electricity power system is the most complicated engineering system has ever been made. The integrated power generating stations with power transmission lines has created a network, called complex power network. The reliability estimation of such complex power networks is a very challenging problem, as one cannot find any immediate solution methods in current literature. In this pape...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کامل